InfoAg 2017 - Remote Sensing (Imagery) Analysis, Today and in the Future

Dave Scheiderer
My Story

• Agronomist – 36 yrs.
• Owner (Integrated Ag Services) – 27 yrs.
• Part time farmer – 31 yrs.
• Business beliefs
 – Practical application of precision ag (PA)
 – Driven by ROI
Imagery Platforms

Satellite

- Economical
- Low resolution
- Cloud cover
- Convenient
Imagery Platforms

UAV

- High resolution
- User driven
- Inefficient
- Large data output
Imagery Platforms
Manned Aircraft

- Economical when mapping large groups of fields
- Manageable data output
- Less weather dependent
- Inefficient when mapping isolated fields
Basics

- Start with the basics to identify (geo-reference) the obvious yield limiting areas
- Liebig's law of the minimum
Liebig's Law of the Minimum

• Streaking – Row starter study
 – In-furrow with N/S (2X2)
 – Red streaks have 60 lbs. less N and no Sulfur
Liebig's Law of the Minimum

- Sulfur Deficiency
Between hybrids, notice leaf angle on each side.

Date Created: 7/10/2017 9:11 AM
Location: 40.10494 | -84.074765
UAV Target Scouting
- High Density ½ ac. grid soil sampling

- Low pH & Mg.

- NDVI confirms same general location
Compaction
Pinch Row Compaction Plus Heavy Rains = Stress on Stress
Planter Pinch Row Compaction

30K ears/ac.
180 Bu./ac.

23K ears/ac.
82 Bu./ac.
Thermal Imagery

- Models CPU Perfectly
 - Soybean Stubble
 - Early Spring
 - Average Moisture

- Models Wind Direction!
Challenges of Aerial Imagery

• Postmortem – too late for corrective action, hence the lack of interest from the grower
• It’s a therapy session – We get together and talk about all our problems
• Limited to zone creation with NO measurable data
• Increases the need for high valued resources in the field (boots on the ground)
• Speed to corrective measures are too slow
The Future of Remote Sensing Crop Modeling

• **Grower Driven!!**
 – Economic
 • Virtual yield mapping and grain marketing
 • Virtual profit mapping
 – Input decisions based on sound ROI
 – Agronomic
 • Using real data to determine size and scope of the problem
 • Models will predict problems before or as they occur (Disease outbreak)
 – Environmental
 • Treatments are applied only when needed
 • Can assess environmental risk versus economic gain
Crop Modeling

– Weather
 • Rainfall
 • Temperature (GDU or GDD)

– Agronomy
 • **Nutrients**
 • **Weeds**
 • **Insects**
 • **Diseases**
 • **Plant stand**

– Crop Condition
 • **Crop height**
 • **Stem diameter**
 • **Canopy volume**

– Crop Damage
 • Mechanical injury
 • Extreme weather events (flooding, cold, heat, hail)
 • Compaction
Profit Calculator & Imagery

- Aerial imagery is classified into management zones
- Each management zone is tagged with specific agronomic rating
- Agronomic ratings are used to refine daily yield estimates and track in-season issues
- Yield estimates are used to determine the need for corrective measures
- Yield/profitability can be accurately analyzed based on agronomy, weather, and the grain markets
MOORE’S LAW

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

curve shows transistor count doubling every two years

Date of introduction
Remote Sensing Drivers – Moore’s Law

• Higher resolution data collection
• Machine learning
• Quantitative data, not zone creation
• Increase the Velocity of data
• Autonomy

Reduced cost!
High Resolution Multispectral Imagery
Machine Learning

- Quantitative Data - machine learning
- Thick Data – agronomist/grower relationship
Quantitative Data
Example: Plant Stands
Velocity of Data

The **velocity of data** increases when more uses of the data are occurring throughout the growing season.
Velocity of Data

The velocity of data increases when more uses of the data are occurring throughout the growing season.
Velocity of Data

If the **velocity of data** is increasing, then more uses of the data are occurring between individuals throughout the growing season.

- Use data quickly to make corrective decisions
- Fast and seamless data transfer to share with many different decision tools
- Use data in modeling software many times during the growing season to validate input decisions and insure profitability (machine learning)
- Postmortem of the year’s activities to build a better plan for the next year
Autonomy
Cost Efficiency

- Lower the cost and increase the velocity of data collection by using remote sensing, machine learning, and automation.
- Allows high valued “thick data” (agronomists) to confirm and collaborate best course of action with the farmer.
Questions
David Scheiderer
937-597-1045
d.scheiderer@integratedag.net