On-Farm Research
A Grassroots Approach
The story of the Kansas Ag Research & Technology Association

Presented by Lucas Haag, Associate Professor and KARTA Faculty Advisor
Kansas State University Northwest Research-Extension Center, Colby, Kansas
Disclaimers

- This is a story of many people, over many years, who have worked in a voluntary capacity. Any success that we may have had is due to the contributions of countless producers, industry, and K-State Research & Extension faculty.

- We do not necessarily have this figured out. I’ll do my best to not overstate our accomplishments and will freely share our challenges with you. I might be hard on ourselves also.

- This presentation is largely the view through my eyes, and thus includes my biases.

- The research examples I give aren’t intended to discuss the topic per se, but to give examples of what our members have done.
What is KARTA?

A brief history...
The same group of people keep showing up to this precision ag conference....

- Beginning in 1998, K-State Extension faculty working in precision ag, led by Randy Taylor, had organized several annual precision ag conferences.

- An astute observation: There was a core group of people that came to and actively engaged in every precision ag event of the time.

- How can we in Extension leverage the excitement and knowledge of these tech-savvy producers to move precision ag forward in Kansas?

- This needed to be bigger than an Extension effort, we needed producers with skin in the game to also provide leadership.
Next steps...

- In 1999, Scott Staggenborg, KSU Extension Agronomist, visits the Montana Precision Ag Research Association, an organization of early adopters of precision ag tech, who had begun to conduct on-farm research.

- The idea of forming a similar organization in Kansas is pitched to the attendees of the next Kansas Ag Technologies Conference. Initially the response from attendees is quite subdued, but momentum builds.

- May 17th, 2000 - Articles of Incorporation are filed, 4 producers and 1 agribusiness representative are the first board members.
On-Farm Research Becomes a Key Mission

- At the 2002 Annual Meeting the first presentations from producers conducting on-farm research are part of the agenda and the membership votes to allocate $6,000 towards producer research grants

- Research funding is subsequently increased to $8,000 in 2006 and $11,000 in 2013

- Funding and support continues to evolve as a key mission of the organization
Why On-Farm Research?
Producer Implementation of Precision Ag

- Better whole-farm management
 - On-Farm Research

- Better whole-field management
 - Making changes from field to field

- Site Specific Management
 - Same process, different scale
A key thought motivating on-farm research

“Precision ag will allow us to make better uniform (whole-field or whole-farm) management decisions.”

- Randy Taylor

- What we learn from PA will lead to better large scale decisions
- Farmers will at least “turn the dial” at the field scale
Technology Changes the Game

- Yield monitors and other precision ag technologies are making it easier for producers to conduct meaningful research.
 - It also makes it easier to conduct junk “research”, just because your software lets you slice yield by some factor doesn’t make it a useful number you should trust. Research should be purposeful.
Why On-Farm Research

- Resources at land-grants are declining and the answers are not going to be as site and situation specific as you would like
- Barrage of specialty products in the market
- \(G \times E \times M \) Interaction
- A way to generate another economic return on your technology investment
Why On-Farm Research

- Producers were looking for an ROI on their technology investments
 - Think back to the early 2000’s, PA hardware was not standard equipment, significant investments has been made
 - The “duh” technologies of autosteer, autoswath, etc. had not yet emerged, people were looking for a payback
KARTA’s Role in On-Farm Research
The role of KARTA - Philosophical

- On-farm research results are considered a byproduct to our mission
 - We are more interested in teaching, sharing, and improving the process of on-farm research than we are any of the results.

- We want to empower you with the skillset needed to use the technology to answer your own questions

- Grassroots vs. Top-Down: While organized projects have a role, the producer will have more buy in if they are researching a topic of their choosing
The role of KARTA

- Networking
- Grant Support, aka “Guilt money”
- Learning Opportunities to Support On-Farm Research
- Outreach to the broader Ag industry
- Annual Ag Technology Conference
The role of KARTA - Networking

- A unique blend of producers, industry, and land-grant personnel
- The source of many ideas, both in terms of research ideas and more importantly, ideas of how to best implement a research project
- Our long-time farmer researchers are a critical piece of this, practical experience
- Land-grant members bring perspective on field and analysis methods
The role of KARTA - Grant Support

- One-page grant application
- Research Coordinator is a position on the board of directors
- Applications are reviewed, external input is sought when needed
- Awards are generally small ($1,000 or less)
- The idea isn’t to fully fund a project but help
- Guilt Money
The role of KARTA - Learning Opportunities

- Workshops are organized through the year
- Serve a dual purpose
 - General audience
 - Support our members who are conducting on-farm research
- Examples
 - Creating VRT scripts from on-farm response data
 - Data analysis and presentation (prior to annual meeting)
 - Using Yield Editor to clean yield monitor data
 - sUAVs and their role in supporting on-farm research
The role of KARTA – Outreach to the broader Ag industry

- These efforts have been opportunistic in nature
- Kansas Applicator Institute (2012-2014)
 - Partnered with Kansas Ag Retailers in providing content for a program geared towards retailers and custom applicators
- Ag Tech Expo in partnership with KS Dept. of Ag
 - Facilitated producer/industry panel on ag tech adoption
 - Presentation on implementing on-farm research for tech ROI
The role of KARTA - Annual Conference

- A project isn’t considered complete until a presentation is made at the Annual Kansas Ag Technologies Conference (*Jan. 16-17, Junction City*)
- Forces synthesis and analysis of the data
- At times, a December workshop has been conducted for participants
- Provides an open venue for feedback on both the findings and more importantly the research process
Lessons Learned
Keep it Simple

- Defining a clear research question is often the hardest part of the process.
- With first time participants, having a success in year one is key to keeping them hungry for more.
- Simpler projects have a much higher probability of success (especially as skills are being built in the early years).
- As the skillset grows so can the complexity of the project.
Keep it Simple to Start Success

- Teach the basics
 - Considering planting width and pattern vs. harvesting width and pattern
 - With and without make for easy T-Test analysis
- Build success, build skills, and work from there
The Power in Numbers

Multiple Producers, Multiple Site-Years

- While we are a grass-roots group with a huge range of independent research interest, there is tremendous power in getting a handful of folks on the same page.

- Growers with the same question who are in similar production systems can amass a site-years quickly with a well planed project.
Effect of Oat Cover Crop and N Fertilization on Subsequent Soybean Grain Yield

Year 2 – 2013 Crop Year
Doug Palen, Glen Elder, Kansas
Chad Simmelink, Esbon, Kansas
Justin Knopf, Gypsum, Kansas
Kevin Wiltse, Rush Center, Kansas
Lucas Haag, K-State NWREC, Colby, Kansas
Materials and Methods – Mitchell 2012 Plot Plan

- Strip plot design
- 6 replications of 3 treatments
- 90ft wide strips
- Ensures 1 clean yield monitor pass

<table>
<thead>
<tr>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Seed</td>
</tr>
<tr>
<td>Oats Only</td>
</tr>
<tr>
<td>Oats and Fertilizer</td>
</tr>
<tr>
<td>No Seed</td>
</tr>
<tr>
<td>Oats Only</td>
</tr>
<tr>
<td>Oats and Fertilizer</td>
</tr>
<tr>
<td>No Seed</td>
</tr>
<tr>
<td>Oats Only</td>
</tr>
<tr>
<td>Oats and Fertilizer</td>
</tr>
<tr>
<td>No Seed</td>
</tr>
<tr>
<td>Oats Only</td>
</tr>
<tr>
<td>Oats and Fertilizer</td>
</tr>
<tr>
<td>No Seed</td>
</tr>
<tr>
<td>Oats Only</td>
</tr>
</tbody>
</table>

Plan 2012 FS2.21

24 January, 2014
Soybean Yield Results

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dickinson</th>
<th>Jewell</th>
<th>Mitchell</th>
<th>Across Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bu ac⁻¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT Fallow</td>
<td>45.7 a</td>
<td>38.3 a</td>
<td>42.6 a</td>
<td>42.3 a</td>
</tr>
<tr>
<td>Oat Cover</td>
<td>42.6 b</td>
<td>24.7 b</td>
<td>36.3 b</td>
<td>34.5 b</td>
</tr>
<tr>
<td>Oat Cover w/Nitrogen</td>
<td>42.5 b</td>
<td>20.2 b</td>
<td>31.2 c</td>
<td>30.8 c</td>
</tr>
</tbody>
</table>

ANOVA P>F

<table>
<thead>
<tr>
<th>Source</th>
<th>Dickinson</th>
<th>Jewell</th>
<th>Mitchell</th>
<th>Across Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>0.0112</td>
<td>0.0013</td>
<td>0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>LSD = 0.05</td>
<td>1.8</td>
<td>6.6</td>
<td>3.6</td>
<td>3.2</td>
</tr>
</tbody>
</table>
Discussion

- Spread of yield differences among sites
- Difference in residual N across sites
- Delayed emergence at Jewell site
- Why an 18 bu. ac$^{-1}$ reduction at JW, 11 at MC, and 3 at DK? What made the difference?
Conclusions

- On-farm research methods can produce “clean” data
 - Plots of equal size
 - Treatment strips of 3x header width will help in getting one good pass of yield data

- Coordinated multi-site studies allows collection of multiple “site-years” in less time

- Nitrogen effected biomass growth of oats
The Power in Numbers

One Producer, Large Number of Site-Years

Another benefit to maintaining simplicity in projects, it’s easier to handle large numbers of replications and thus increase the confidence in what you observe.

Example: Do row-cleaners pay in Northwest Kansas No-Till Limited Irrigation Corn?

This question flies in the face of common perception, “Of course they do!”
Row Cleaner Evaluation in limited irrigation no-till corn -in Northwest Kansas

22nd Annual Kansas Ag. Research & Technology Association (KARTA) Conference
January 17 and 18, 2019
Junction City, Kansas

www.kartaonline.org
Standard Strip Trial
Results 2016

Table shows reps, averaged by Field. Total observations = 58

<table>
<thead>
<tr>
<th>Field</th>
<th>Reps</th>
<th>Row Cleaner</th>
<th>No Row Cleaner</th>
<th>Yield Diff</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8</td>
<td>197.54</td>
<td>193.42</td>
<td>4.12</td>
<td>Grazed</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>120.80</td>
<td>122.53</td>
<td>-1.73</td>
<td>Cover</td>
</tr>
<tr>
<td>C</td>
<td>14</td>
<td>238.20</td>
<td>237.72</td>
<td>0.48</td>
<td>Cover</td>
</tr>
<tr>
<td>D</td>
<td>12</td>
<td>207.26</td>
<td>207.35</td>
<td>-0.09</td>
<td>Grazed</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>213.27</td>
<td>215.10</td>
<td>-1.83</td>
<td>Grazed</td>
</tr>
<tr>
<td>F</td>
<td>10</td>
<td>209.20</td>
<td>211.35</td>
<td>-2.14</td>
<td>Grazed</td>
</tr>
</tbody>
</table>

No Difference!
Table shows reps, averaged by Field. Total observations = 67

<table>
<thead>
<tr>
<th>Field</th>
<th>Reps</th>
<th>Row Cleaner</th>
<th>No Row Cleaner</th>
<th>Yield Diff</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>16</td>
<td>166.56</td>
<td>171.74</td>
<td>-5.18</td>
<td>Grazed</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>154.19</td>
<td>152.18</td>
<td>2.01</td>
<td>Grazed</td>
</tr>
<tr>
<td>E</td>
<td>16</td>
<td>190.41</td>
<td>184.10</td>
<td>6.32</td>
<td>Grazed</td>
</tr>
<tr>
<td>F</td>
<td>18</td>
<td>253.03</td>
<td>252.75</td>
<td>0.28</td>
<td>None</td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td>209.30</td>
<td>205.60</td>
<td>3.71</td>
<td>Rye Cover</td>
</tr>
</tbody>
</table>

Maybe a little Difference?
Results 2017 –Same Combine

<table>
<thead>
<tr>
<th>Field</th>
<th>Reps</th>
<th>Row Cleaner</th>
<th>No Row Cleaner</th>
<th>Yield Diff</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>178.80</td>
<td>181.12</td>
<td>-2.33</td>
<td>Grazed</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>140.15</td>
<td></td>
<td>-8.09</td>
<td>Grazed</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>183.28</td>
<td></td>
<td>5.46</td>
<td>Grazed</td>
</tr>
<tr>
<td>F</td>
<td>7</td>
<td>237.08</td>
<td></td>
<td>0.84</td>
<td>None</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>194.93</td>
<td>194.91</td>
<td>0.02</td>
<td>Rye Cover</td>
</tr>
</tbody>
</table>

To check for data collection problems associated with running 4 machines across plots, this table shows only observation pairs that resulted from the same machine cutting both the plot and the control for any specific observation. Again, little Difference!
Results 2018

The table below shows the yield differences across different treatments, averaged by field. A total of 85 observations were recorded.

<table>
<thead>
<tr>
<th>Field</th>
<th>Reps</th>
<th>Row Cleaner</th>
<th>No Row Cleaner</th>
<th>Yield Diff</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9</td>
<td>213.65</td>
<td>204.97</td>
<td>8.68</td>
<td>Grazed</td>
</tr>
<tr>
<td>C</td>
<td>16</td>
<td>220.48</td>
<td>224.38</td>
<td>-3.89</td>
<td>Grazed</td>
</tr>
<tr>
<td>E</td>
<td>16</td>
<td>263.84</td>
<td>263.05</td>
<td>0.80</td>
<td>Grazed</td>
</tr>
<tr>
<td>F</td>
<td>16</td>
<td>289.12</td>
<td>288.56</td>
<td>0.56</td>
<td>Grazed</td>
</tr>
<tr>
<td>G</td>
<td>12</td>
<td>226.42</td>
<td>224.66</td>
<td>1.76</td>
<td>Rye Cover</td>
</tr>
<tr>
<td>H</td>
<td>16</td>
<td>294.49</td>
<td>288.26</td>
<td>6.23</td>
<td>Soybeans</td>
</tr>
</tbody>
</table>

Again, maybe a little Difference?
Results 2018 – Same Combine

To check for data collection problems associated with running 4 machines across plots, this table shows only observation pairs that resulted from the same machine cutting both the plot and the control for any specific observation.

<table>
<thead>
<tr>
<th>Field</th>
<th>Reps</th>
<th>Row Cleaner</th>
<th>No Row Cleaner</th>
<th>Yield Diff</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>221.65</td>
<td>218.60</td>
<td>3.05</td>
<td>Grazed</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>213.16</td>
<td>218.98</td>
<td>-5.82</td>
<td>Grazed</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>268.69</td>
<td>258.68</td>
<td>10.01</td>
<td>Grazed</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
<td>289.65</td>
<td>291.56</td>
<td>-1.91</td>
<td>Grazed</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>230.90</td>
<td>231.07</td>
<td>-0.16</td>
<td>Rye Cover</td>
</tr>
<tr>
<td>H</td>
<td>2</td>
<td>295.51</td>
<td>301.62</td>
<td>-6.11</td>
<td>Soybeans</td>
</tr>
</tbody>
</table>

| 18 | 253.26 | 253.42 | -0.16 |

Noppe, back to no difference!
Results 2016, 2017, 2018

<table>
<thead>
<tr>
<th>Year</th>
<th>Field</th>
<th>Reps</th>
<th>Yield Cleaner</th>
<th>Yield No Cleaner</th>
<th>Yield Diff</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>A</td>
<td>8</td>
<td>197.54</td>
<td>193.42</td>
<td>4.12</td>
<td>Grazed</td>
</tr>
<tr>
<td>2016</td>
<td>B</td>
<td>6</td>
<td>120.80</td>
<td>122.53</td>
<td>-1.73</td>
<td>Cover</td>
</tr>
<tr>
<td>2016</td>
<td>C</td>
<td>14</td>
<td>238.20</td>
<td>237.72</td>
<td>0.48</td>
<td>Cover</td>
</tr>
<tr>
<td>2016</td>
<td>D</td>
<td>12</td>
<td>207.26</td>
<td>207.35</td>
<td>-0.09</td>
<td>Grazed</td>
</tr>
<tr>
<td>2016</td>
<td>E</td>
<td>8</td>
<td>213.27</td>
<td>215.10</td>
<td>-1.83</td>
<td>Grazed</td>
</tr>
<tr>
<td>2016</td>
<td>F</td>
<td>10</td>
<td>209.20</td>
<td>211.35</td>
<td>-2.14</td>
<td>Grazed</td>
</tr>
<tr>
<td>2017</td>
<td>A</td>
<td>16</td>
<td>166.56</td>
<td>171.74</td>
<td>-5.18</td>
<td>Grazed</td>
</tr>
<tr>
<td>2017</td>
<td>C</td>
<td>13</td>
<td>154.19</td>
<td>152.18</td>
<td>2.01</td>
<td>Grazed</td>
</tr>
<tr>
<td>2017</td>
<td>E</td>
<td>16</td>
<td>190.41</td>
<td>184.10</td>
<td>6.32</td>
<td>Grazed</td>
</tr>
<tr>
<td>2017</td>
<td>F</td>
<td>18</td>
<td>253.03</td>
<td>252.75</td>
<td>0.28</td>
<td>None</td>
</tr>
<tr>
<td>2017</td>
<td>G</td>
<td>4</td>
<td>209.30</td>
<td>205.60</td>
<td>3.71</td>
<td>Rye Cover</td>
</tr>
<tr>
<td>2018</td>
<td>A</td>
<td>9</td>
<td>213.65</td>
<td>204.97</td>
<td>8.68</td>
<td>Grazed</td>
</tr>
<tr>
<td>2018</td>
<td>C</td>
<td>16</td>
<td>220.48</td>
<td>224.38</td>
<td>-3.89</td>
<td>Grazed</td>
</tr>
<tr>
<td>2018</td>
<td>E</td>
<td>16</td>
<td>263.84</td>
<td>263.05</td>
<td>0.80</td>
<td>Grazed</td>
</tr>
<tr>
<td>2018</td>
<td>F</td>
<td>16</td>
<td>289.12</td>
<td>288.56</td>
<td>0.56</td>
<td>Grazed</td>
</tr>
<tr>
<td>2018</td>
<td>G</td>
<td>12</td>
<td>226.42</td>
<td>224.66</td>
<td>1.76</td>
<td>Rye Cover</td>
</tr>
</tbody>
</table>
Prior Planning Prevents Poor Performance

- Our biggest disappointments have generally resulted when planning and design of the study was inadequate
 - Poor treatment selection
 - (e.g. wide enough ranges for response curve work)
 - Poor Experimental Design
 - No true replications, design doesn't match inference space
 - Failure to maintain data integrity
 - Can occur by accident or negligence
- Difficult to salvage something that starts off wrong
Future Challenges
Future Challenges - On Farm Research

- Ag software has made little, if any, progress in facilitating on-farm research. Often still a multi-application approach, FMS, GIS, Excel, R, etc.

- Balancing increasingly complex questions with the practical limitations of on-farm research

- Still a need for people with research experience as well as boots on the ground agronomy. People, and their time, is in short supply
Future Challenges - KARTA Organization

- Things have changed a lot since the late 1990’s, we’ve tried to keep up. How do we continue to evolve?

- Changing demographics, changing ways of learning, changing ways of ingesting information. How do we adapt?

- Changes in how people want to learn from and interact with their data. “I don’t have time for the process, just give me the answer”
Future Opportunities

- We have access to more data, at less cost, than ever before. This supplementary data will help us better understand the key yield response. (This is also a challenge)

- There is an opportunity here for CCA’s and consultants to drive the use of ag technology for \textit{quality} on-farm research, as a value-added service to their clients and to better inform their own recommendations.
A Wide Range of Interest - 2018 Projects

- Cover Crops in Continuous Irrigated Corn
- Soil-Specific Cover Crop Selection
- VariMax Testing
- Fungicide on Soybeans
- Evaluating Talc Seed Treatments for Corn
- Row Cleaner Evaluation in Irrigated Corn
- Zinc Soil Management for Corn
- Long-Term Effect of Canola in Crop Rotation
- Soybean Seed Rate x Plant Date x Maturity
- Low-Cost Thermal Camera Use in Ag
- Vegetable Production Tunnel Comparison
- Grain Sorghum Seeding Rates
- What Does a Yield Data Point Represent?
Reflections from 10 Days in Germany & Agritechnica, the World's Largest Farm Show

- Mark and Kim Viets
- Gary and Dianna Kastens
- Terry and Marilyn Kastens
- John Kreuger
- Denton Haag
- Lee Scheufler
- Dan Taylor
- Tony Steuve
- Ajay Sharda
- Randy Taylor

November 1 – 12, 2015
What really makes KARTA tick?

Our people, who thrive on technology but also enjoy a good story, sharing ideas, and calling BS on someone when needed.
Comments, Questions, Discussion

www.KARTAonline.org